$$
H^{*}\left(B S O(2 n) ; \mathbb{Z}=\mathbb{Z}\left[p_{1}, \ldots, p_{n}, e\right] /\left\langle e^{2}=p_{n}\right\rangle \oplus\right. \text { Torsion }
$$

where Torsion is as above
D. Obstruction Theory, take two
suppose $A \subset X$ and we have a map $f: A \rightarrow Y$
Can we extend f to a map $X \rightarrow Y$?
Use obstruction theory again! as usual assume
A) (X, A) a relative $C W$-complex (so $X^{(-1)}=A$ and $X^{(k)}$ obtained from $X^{(k-1)}$ by attaching k-cells)
B) Y is n-simple for all n (ne. $\pi_{1}(y)$ acts trivially on $\pi_{n}(y)$ So $\left.\pi_{n}(Y)=\left[5^{n}, \varphi\right]\right)$

Th ${ }^{\text {m }} 19$:
given (X, A) satisfying $A)$ and Y satisfying $B)$ and $f: X^{(n)} \rightarrow Y$
then 1) \exists a cocycle $\tilde{\sigma}(f) \in C^{n+1}\left(X_{\&} A_{j} \pi_{n}(Y)\right)$ which vanises
\Leftrightarrow
f extends to $x^{(n+1)}$
2) $\sigma(f)=[\tilde{\sigma}(f)] \in H^{n t 1}\left(x, A ; \pi_{1}(y)\right)$ vanishes

$$
\Leftrightarrow
$$

$\left.f\right|_{x^{(n-1)}}$ extends to $x^{(n+1)}$

Proof, just like in Section A

$$
\tilde{\sigma}(f): C_{n+1}^{c w}(X, A) \rightarrow \tilde{\pi}_{n}(Y)
$$

$\oplus \mathbb{Z}_{e_{i}^{n+1}} \leftarrow \begin{aligned} & \text { free abeliaingroup } \\ & \text { generated by }(n t 1) \text { cells }\end{aligned}$
is defined as follows:
$e_{i=1}^{n+1}$ is attached by a map

$$
\phi_{1}:\left(\partial e_{i}^{n+1}=s^{n}\right) \rightarrow x^{(n)}
$$

so $\sigma\left(e_{2}^{n+1}\right)=\left[f \circ \phi_{2}\right] \in\left[S_{1}^{n}, v\right] \cong \pi_{n}(v)$
exencose:

1) $\tilde{\sigma}(f)=0 \Leftrightarrow f$ extends to $x^{(n+1)}$
2) $\tilde{\sigma}(f)$ unchanged under homotopy of f
3) $\delta \tilde{\sigma}(f)=0$
4) given $f, g: X^{(n)} \rightarrow \zeta$ that agree on $X^{(n-1)}$ then $\exists \tau(f, g) \in C^{n}\left(X, A ; \pi_{n}(Y)\right)$ st.

$$
\delta \tau(f, g)=\tilde{\sigma}(f)-\tilde{\sigma}(g)
$$

5) by varying the homotopy class of f on $X^{(n)}$, relative to $X^{(n-1)}$, we can change $\approx(f)$ by an arbitrary coboundary
Hint: See proofs of Lemmas 1 and 2 This follows

Th $\mathrm{m} 20:$
let $f, g: X \rightarrow Y$ be given (satisfying A), B) above) and $H: X^{(n)} \times[0,1] \rightarrow Y$ a homotopy $f I_{\left.x^{(n)}\right)} g l_{X^{(n)}}$ the obstruction to extend H to $X^{(n+1)} \times[0,1] \rightarrow Y$ lies in

$$
H^{n}\left(X, A_{j} \pi_{n}(Y)\right)
$$

Proof: by $T^{m} 19$ we get an obstruction in

$$
H^{n+1}\left(X \times[0,1],((A \times[0,1]) \cup(X \times\{0,1\})) ; \pi_{n}(Y)\right)
$$

now let $U_{1}=X \times[0,3 / 4], V_{1}=(X \times\{0\}) \cup(A \times[0,3 / 4])$

$$
\begin{aligned}
U_{2} & =X \times\left[y_{4}, 1\right], \quad V_{2}=(X \times\{1\}) \cup(A \times[1 / 4,1]) \\
U_{1} \cap U_{2} & =X \times[4 / 4,3 / 4], \quad V_{1} \cap V_{2}=A \times[1 / 4,3 / 4]
\end{aligned}
$$

and since (X, A) an NDR pair Lemma I. 9 says $(X \times\{0\}) \cup A \times[0,3 / 4]$ is a retract of $X \times[0,3 / 4]$ so $H^{n}\left(U_{1}, V_{1}\right)=0$
now

$$
\underbrace{H^{n}\left(U_{1}, V_{1}\right) \oplus H^{n}\left(U_{2}, V_{2}\right)}_{\vdots} \rightarrow H^{n}\left(U_{1} \cap V_{2}, V_{1} \cap V_{2}\right) \rightarrow H^{n+1}\left(U_{1} \cup V_{2}, V_{1} \cup V_{2}\right) \rightarrow \underbrace{H^{n+1}\left(U_{1}, V_{1}\right) \in H^{n+1}\left(U_{2}, V_{2}\right)}_{\substack{11 \\ 0}}
$$

So $\left.H^{n}(X \times[1 / 4,3 / 4], A \times[4,3 / 4]) \cong H^{n}(X \times[0,1],(X \times[0,1\}) \cup A \times[0,1])\right)$
SI)

$$
H^{n}(X, A)
$$

so obstruction lives in claimed group!
Thㅡㅡ21:
let (X, A) be a relative $C W$ - complex and Y be an n-simple space for all n if $\pi_{k}(y)=0 \quad \forall k<n-1$, then for any $f: A \rightarrow y$ \exists an extension $\tilde{f}: X^{(n)} \rightarrow Y$ and the obstruction $[\sigma(\tilde{f})]$ only depends on f so denote $i \bar{t} \gamma^{n+1}(f) \in$ Sprinsary $o b s t r a c t i o n$ moreover if $g:\left(X_{1}^{\prime} A^{\prime}\right) \rightarrow(X, A)$ then

$$
g^{*}\left(\gamma^{n+1}(f)\right)=\gamma^{n+1}(f \circ g)
$$

Proof: just like proof of $T^{m} \psi$

Th ${ }^{m} 22$ (Brown Representation Th ${ }^{\text {m }}$):
let (X, A) be a relative CW pair there is a natural bijection

$$
\left[(x, A), \underset{\substack{\text { Elenberg-Mclone } \\ \text { spate }}}{\left.\left(K(\pi, n), x_{2}\right)\right]} \leftrightarrow H^{n}(X, A ; \pi)\right.
$$

Proof: by Hurewicz $H_{k}(K(\pi, n))=0$ for $k<n$ and $H_{n}(K(\pi, n)) \cong \pi_{n}(k(\pi, n))=\pi$ the Universal Coefficients T^{m} says

$$
\begin{aligned}
H^{n}(K(\pi, n) ; \pi) & \cong \operatorname{Hom}\left(H_{n}(k(\pi, n)), \pi\right) \oplus E x t\left(H_{n-1}^{\prime \prime}(K(\pi, n)), \pi\right) \\
& \cong \operatorname{Hom}(\pi, \pi)
\end{aligned}
$$

let $L \in H^{n}(K(\pi, n), \pi)$ correspond to id: $\pi \rightarrow \pi$ define $\psi:\left[(x, A),\left(K(\pi, n), x_{0}\right)\right] \rightarrow H^{n}(x, A ; \pi)$

$$
f \longmapsto f^{*} c
$$

note: since $\pi / k(K(\pi, n))=0 \forall k<n$ the first obstruction to homotoping a map $f:(X, A) \rightarrow\left(K(\pi, n), x_{0}\right)$ to be constant lives in $H^{n}((X, A), \pi)$
Claim: this obstruction is $\Psi(f)$
to see this note that by then naturality of the primary obstruction we just need to check that C is the primary obstruction to homotopirg the identity map $K(\pi, n) \rightarrow K(\pi, n)$ to the constant map we know $K(\pi, n)^{(n-1)}=x_{0}$
so id and constant map agree on $K(\pi, n)^{(n-1)}$ the n-cells e_{i}^{n} correspond to generators
of $\pi=\pi_{n}(k(\pi, n))$
$\tilde{\theta} \in H^{n}\left(\left(K(\pi, n), x_{0}\right) ; \pi\right) \cong H^{n+1}\left(\left(K(\pi, n),\left(\left\{x_{0}\right\} \times[0,1]\right) \cup(K(\pi, n) \times\{0,1\})\right)\right.$

so $\tilde{\theta}$ sends e_{i}^{n} to generator corresp e_{i}^{n}.
ie. $\tilde{\theta}=l$ so claim is true
Claim: ψ is onto
let $\alpha \in H^{n}(X, A ; \pi)$
$\exists \tilde{\alpha} \in C^{n}(x, A ; \pi)$ s.f. $\alpha=[\tilde{\alpha}]$
so $\tilde{\alpha}: C_{n}(x, A) \rightarrow \pi$
define f_{α} on to be constant on $X^{(n-1)}$
and for each n-cell e_{i}^{n} of X

$$
f_{\alpha}: e_{i}^{n} \rightarrow K(\pi, n)
$$

represents $\left[f_{\alpha}\left(e_{i}^{n}\right)\right]=\tilde{\alpha}\left(e_{i}^{n}\right) \in \pi=\pi_{n}(K(\pi, n))$
this gives f_{α} on $X^{(n)}$
for each e_{j}^{n+1} of X note

$$
\tilde{\alpha}\left(\partial e_{j}^{n+1}\right)=0 \quad \text { since } \delta \tilde{\alpha}=0
$$

so $f_{\alpha}\left(\partial e_{j}^{n+1}\right)$ is null-homotopic in $K(\pi, n)$ and we can extend f_{α} over e_{j}^{n+1}, see over $x^{(n+1)}$
but now $\pi_{k}(K(\pi, n))=0 \quad \forall k>n$,
50 no obstruction to extending f_{α} to $f: X \rightarrow K(\pi, n)$ as in proof of first claim we clearly have

$$
\psi\left(f_{\alpha}\right)=f_{\alpha}^{*}(c)=\alpha
$$

Claim: ψ is infective
suppose $f, g:(X, A) \rightarrow\left(K(\pi, n), x_{0}\right)$ s.t. $\psi(f)=\psi(g)$
the primary, and only, obstruction to a homotopy from f to g lives in

$$
\theta \in H^{n}(X, A ; \pi)
$$

if we evaluate on e_{i}^{n} we get $\theta\left(e_{i}^{n}\right)$

so $\theta\left(e_{i}^{n}\right)=f\left(e_{i}^{\eta}\right)-g\left(e_{i}^{\eta}\right) \in \pi_{n}(\pi, n)$

$$
=l\left(\left(f_{x}-g_{*}\right)\left(e_{z}^{y}\right)\right)
$$

$$
=\left(f^{k} c-g^{*} l\right)\left(e_{i}^{\eta}\right)=0
$$

$\therefore f$ is homotopic to g

