$H^*(B50(2n); \mathcal{Z} = \mathcal{Z}[\rho_1, ..., \rho_n, e] / (e^2 = \rho_n) \oplus Torsion$ where Torsion is as above

D. Ubstruction Theory, take two

suppose ACX and we have a map f: A -> Y

Can we extend f to a map $X \rightarrow Y?$ Use obstruction theory again!

as usual <u>assume</u>

A) (X,A) a relative CW-complex (so X⁽⁻¹⁾= A and X^(k) obtained from X^(k-1) by attaching k-cells) B) Y is n-simple for all n (re TI, (Y) acts trivially on Th (Y) 50 Th (Y) = [5, Y])

76=19: given (X,A) satisfying A) and I satisfying B) and $f: X^{(n)} \to Y$ then i)] a cocycle $\mathcal{F}(f) \in C^{n*'}(X,A;\pi_{n}(Y))$ which vanises

f extends to X(n+1) 2) 0-(f)=[õ(f)] ∈ H^{n ↔}(X,A; T,(H) vanishes fl_x(n-1) extends to X (a+1)

Proof just like in Section A $\widetilde{\sigma}(f): C_{n+i}^{cw}(X,A) \longrightarrow \pi(Y)$ Denerated by (1+1) cells is defined as follows: en is attached by a map $\phi:(\partial e^{n \in l} = 5^n) \longrightarrow \chi^{(n)}$ 50 $\mathcal{C}(e^{\pi \theta}) = [f \circ \phi \cdot] \in [S, \gamma] \equiv \pi(\gamma)$ exercise: 1) $\mathcal{F}(f) = 0 \iff f$ extends to $\chi^{(n+1)}$ z) O(f) unchainged under homotopy of f 3) 5 8 (7) = 0 4) given f,g: X(n) -> I that agree on X(n-1)

then $\exists \Upsilon(f,g) \in C^n(X,A;\pi_n(Y))$ st.

 $\delta \sim (f,g) = \tilde{\sigma}(f) - \tilde{\sigma}(g)$

5) by varying the homotopy class of
$$f$$
 on
 $\chi^{(n)}$, relative to $\chi^{(n-1)}$, we can
change $\mathcal{F}(f)$ by an arbitrary
coboundary
Hint: See proofs of Lemmas 1 and 2
The follows
 $\mathcal{T}h^{m}20$:
 $[et f,g:X \rightarrow Y be given (satisfying A), B) above)$
and $H:\chi^{(n)}[o,1] \rightarrow Y$ a homotopy $f(m)$ to $g(y^{(n)})$

and
$$H: X \times [o, 1] \longrightarrow Y$$
 a homotopy $F|_{X^{(n)}}$ to $g|_{X^{(n)}}$
the obstruction to extend H to $X^{(n+1)} \times [o, 1] \longrightarrow Y$
lies in
 $H^{r}(X, A; \pi_{n}(Y))$

Proof: by
$$Th = 19$$
 we get an obstruction in
 $H^{n+1}(X \times [0,1], ((A \times [0,1]) \cup (X \times [0,1])); \pi_n(Y))$
now let $U_1 = X \times [0, 3/4]$, $V_1 = (X \times [0, 3]) \cup (A \times [0, 3/4])$
 $U_2 = X \times [Y_{4,1}]$, $V_2 = (X \times [1]) \cup (A \times [1/4, 1])$
 $U_1 \cap U_2 = X \times [Y_{4, 3/4}]$, $V_1 \cap V_2 = A \times [Y_{4, 3/4}]$
and since (X,A) an NDR pair Lemma I.9 says
 $(X \times [0]) \cup A \times [0, 3/4]$ is a retract of $X \times [0, 3/4]$
so $H^n(U_1, V_1) = 0$

NOW

 $H^{n}(U_{1},V_{1}) \oplus H^{n}(U_{2},V_{2}) \to H^{n}(U_{1},U_{2},V_{1},U_{2}) \to H^{n+1}(U_{1},U_{2},V_{1},U_{2}) \to H^{n+1}(U_{1},V_{1}) \oplus H^{n+1}(U_{2},V_{2})$ D $H''(X \times ['_{4}, 3/_{4}], A \times ['_{4}, 3/_{4}]) \cong H''(X \times [o, 1], (X \times [o, 1]) \cup A \times [o, 1]))$ 50 If n(X,A) so obstruction lives in claimed group! Thm 21: let (X,A) be a relative CW-complex and I be an n-simple space for all n IF The (Y) = O UK < n-1, then for any f: A -> Y I an extension $\tilde{f}: X^{(n)} \rightarrow Y$ and the obstruction $[\sigma(\tilde{f})]$ only depends on f so denote it gnt'(f) e obstruction moreorer if 9: (X', A') -> (X, A) then 9 * (Yn + (f)) = Y * + (f • g)

Proof: just like proof of Thmy

The 22 (Brown Representation The): let (X,A) be a relative LW pair there is a natural bijection

 $\begin{bmatrix} (X,A), (K(\pi,n), x_{o}) \end{bmatrix} \leftrightarrow H^{n}(X,A;\pi) \\ \stackrel{C}{\underset{\text{source}}{\overset{\text{clone}}}{\overset{\text{clone}}{\overset{\text{clone}}{\overset{\text{clone}}{\overset{\text{clone}}{\overset{\text{clone}}{\overset{\text{clone}}{\overset{\text{clone}}{\overset{\text{clone}}{\overset{\text{clone}}{\overset{\text{clone}}{\overset{\text{clone}}}{\overset{\text{clone}}{\overset{\text{clone}}{\overset{\text{clone}}{\overset{\text{clone}}{\overset{\text{clone}}{\overset{\text{clone}}{\overset{\text{clone}}{\overset{\text{clone}}{\overset{\text{clone}}{\overset{\text{clone}}}{\overset{\text{clone}}{\overset{\text{clone}}{\overset{\text{clone}}{\overset{\text{clone}}}{\overset{\text{clone}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}{\overset{the}}}{\overset{the}}{\overset{the}}{\overset{the}}}}}}}}}}}}}}}}}}}}}}}}}}}$

 $\frac{Proof}{Proof}: by Hurewicz H_{k}(K(\pi,n)) = 0 \text{ for } k < n$ $and H_{n}(K(\pi,n)) \cong \pi_{n}(K(\pi,n)) = \pi$ the Universal Coefficients The says $H^{n}(K(\pi,n);\pi) \cong Hown (H_{n}(K(\pi,n)),\pi) \oplus Ext(H_{n-1}(K(\pi,n)),\pi)$ $\cong Hom (\pi,\pi)$

let
$$L \in H^{n}(K(\pi, n), \pi)$$
 correspond to $id: \pi \rightarrow \pi$
define $\Psi: [(X, A), (K(\pi, n), x_{0})] \longrightarrow H^{n}(X, A; \pi)$
 $f \longmapsto f^{*}C$

note: since
$$T_h(K(\pi,n)) = 0 \forall k < n$$
 the first obstruction
to homotoping a map $f: (X, A) \rightarrow (K(\pi,n), \pi_0)$
to be constant lives in $H^n((X, A), \pi)$
Claim: this obstruction is $\Psi(f)$

to see this note that by then naturality of the primary obstruction we just need to check that L is the primary obstruction to homotoping the identity map $K(\pi,n) \rightarrow K(\pi,n)$ to the constant map we know $K(\pi,n)^{(n-1)} = x_0$ so id and constant map agree on $K(\pi,n)^{(n-1)}$ the n-cells e_i^n correspond to generators

so $f_{\alpha}(\partial e_{j}^{n+1})$ is null-homotopic in $K(\pi, n)$ and we can extend f_{α} over e_{j}^{n+1} , se over $X^{(n+1)}$ but now $\pi_k(K(\pi, n)) = D \quad \forall k > n$, so no obstruction to extending f_{α} to $f_{\alpha}: X \rightarrow K(\pi, n)$ as in proof of first claim we clearly have $\Psi(f_{\alpha}) = f_{\alpha}^{*}(L) = \alpha$

<u>Claim</u>: *Y* is injective suppose $f,g:(X,A) \rightarrow (K(\pi,n), \infty)$ s.t. $\Psi(f) = \Psi(g)$ the primary, and only, obstruction to a homotopy from f to g lives in $\Theta \in H^{n}(X,A;\pi)$ if we evaluate on e_i^n we get $\Theta(e_i^n)$ g(e ") $K(\pi,n)$ (n-1) X × [0.1] e1 x {1} f(e ") $50 \quad \Theta(e_i^n) = f(e_i^n) - g(e_i^n) \in \pi_n(\pi, n)$ $= l((f_* - g_*)(e_*))$ $= (f^{*} c - g^{*} c) (e_{i}^{n}) = 0$: fis homotopic to q